Unit: 3 – Modeling and Analyzing Quadratic Functions

1.	What is the correct factored form for $f(x) = x^2 + 4x - 32$?		
DOK: 1	A. $(x + 8)(x - 4)$	В.	(x - 8)(x + 4)
	C. (x + 16)(x − 2)	D.	(x + 16)(x – 16)
2.	Which statement best describes the graph of f	(x) =	$(x-2)^2 + 4$
DOK:	A. Shifted right two, shifted up 4	В.	Shifted left 2, shifted up 4
1	C. Shifted right 4, shifted down 2	D.	Shifted left 4, shifted up 2
3.	Use the quadratic formula to solve: $x^2 - 10x + $	18 =	· 0.
DOK:	A. $10 \pm 2\sqrt{7}$	B.	$5 \pm \sqrt{7}$
1	C. $-10 \pm 2\sqrt{7}$	D	. No Solution
4.	Solve $x^2 + 6x - 7 = 0$		
DOK:	A. {-7, -1}	В.	{7, 1}
1	C. {7, -1}	D.	{-7, 1}
5.	What is the range of the following graph:		•
DOK: 1			

Α.	All real numbers	B. y > -1
C. ×	< > -1	D. y < - 1

6. For which quadratic equation is the axis of symmetry x = 3?

DOK: 1 A. $y = -x^2 + 3x + 5$ C. $y = -x^2 + 6x + 2$ B. $y = x^2 + 6x + 3$ D. $y = x^2 + x + 3$

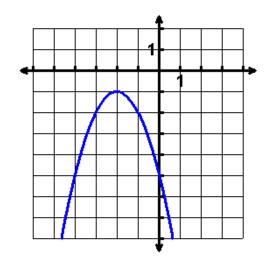
Unit: 3 - 7.	t: 3 – Modeling and Analyzing Quadratic Functions What is/are the solution/s to the following graph?		
DOK: 1			
	A. (-3, 1)	B. All real numbers	
	C. No solution	D. (-5, 0), (-3, 0)	
8.	Solve: $x^2 + 7x = 1$		
DOK:	A. $x = \frac{-7 \pm \sqrt{53}}{2}$	B. $x = \frac{7 \pm \sqrt{53}}{2}$	
1	C. $x = 7 \pm \sqrt{53}$	D. $x = -7 \pm \sqrt{53}$	
9.	Find the vertex for: $f(x) = x^2 - 2x - 8$		
DOK:	A. (-1, -9)	B. (1, -9)	
1	C. (9, 1)	D. (-9, 1)	
10.	The height, y, in feet, a ball will reach when thrown is $y = -16x^2 + 30x + 6$. Find to the nearest tenth, the	÷ · ·	
DOK: 2	A. 39.3 feet	B. 33.2 feet	
	C. 19.9 feet	D. 20.1 feet	
11.	Find and interpret the discriminant for: $3r^2 - 5r^2$	r = -8r + 2	
DOK:	A. 33; two irrational solutions	B. 36; two rational solutions	
2	C. 0; one rational solution	D. No solution	
12.	What is the rate of change on the interval $3 < x$	< 5 for $f(x) = -x^2 + 6x - 7?$	
DOK:	A. m = 0	B. $m = -\frac{1}{2}$	
2	C. m = -2	D. $m = \frac{1}{2}$	

Unit: 3 – Modeling and Analyzing Quadratic Functions

13. A rocket is shot into the air with an initial velocity of 800 m/sec. The equation $h = -16t^2 + 1440t$ models the height of the rocket. How long does it take for the rocket to hit the ground?

DOK:

A. 90 seconds


B. 16 seconds

C. 800 seconds

- D. 1440 seconds
- 14. What is the interval of decrease for the following graph:

DOK:

1

A. $-\infty < x < -5$	B. $-2 < x < \infty$
C. $-\infty < x < -2$	D. −1 < <i>x</i> < ∞

15. Which statement BEST describes how the graph of $g(x) = \frac{1}{2}x^2 + 2$ compares to the graph DOK: of $f(x) = x^2$?

- A. The graph of g(x) is a vertical shrink of f(x) by a factor of 2.
 - C. The graph of g(x) is a vertical shrink of f(x) by a factor of $\frac{1}{2}$.
- B. The graph of g(x) is a vertical stretch of f(x) by a factor of $\frac{1}{2}$.
- D. The graph of g(x) is a vertical stretch of f(x) by a factor of 2.
- 16. Abigail tosses a coin off a bridge into the stream below. The distance, in feet, the coin is above the water is modeled by the equation $f(x) = -16x^2 + 96x + 112$. X represents time in seconds. What DOK: is the maximum height of the coin?

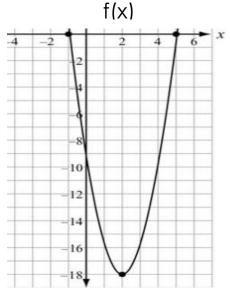
A. 275 feet	B. 300 feet
C. 245 feet	D. 256 feet

- 17. If a toy rocket is launched vertically upward from ground level with an initial velocity of 128 feet per second, then its height *h* after *t* seconds is given by the equation $f(t) = -16t^2 + 128t$ (if air DOK: resistance is neglected). After how many seconds will the rocket be 192 feet above the ground?
- 2

1

2

B. 3 seconds


C. 5 seconds

A. 4 seconds

D. 6 seconds

- Unit: 3 Modeling and Analyzing Quadratic Functions
- 18. Use this table to answer the question. What is the average rate of change of g(x) over the interval -1 < f(x) < 2?
- DOK:
 - 1
- A. 3 B. 4
- C. -4 D. 6
- 19. What is the end behavior of the graph of $f(x) = -2x^2 + 2x 4$?
 - A. As x increases, f(x) increases
- DOK: 1
- As x decreases, f(x) decreases C. As x increases, f(x) increases
- As x decreases, f(x) increases

- x g(x) -1 -4 0 -4 1 0 2 8
- $x^2 + 2x 4?$
- B. As x increases, f(x) decreases As x decreases, f(x) increases
- D. As x increases, f(x) decreases As x increases, f(x) decreases
- 20. Compare the graph of f(x) to the function $g(x)4x^2 + 6x 18$. Which function has the lesser minimum value? HOW DO YOU KNOW?
- DOK:
 - 3

Unit: 3 – Modeling and Analyzing Quadratic Functions

ANSWERS.	
1) A	11) A
2) A	12) C
3) B	13) A
4) D	14) B
5) B	15) C
6) C	16) D
7) D	17) C
8) A	18) B
9) B	19) D
	20) $g(x)$, The minimum is the y-value of the vertex. The vertex of the graph $f(x)$ is (2, -18).
10) D	Use $x = -\frac{b}{2a}$ to find the vertex of g(x), which is (-
	,75, -20.25)20.25 < -18, so the function $g(x)$ has the lesser minimum value.

ANSWERS:

Unit: 3 – Modeling and Analyzing Quadratic Functions

ANSWERS:	
1) A	11) A
2) A	12) C
3) B	13) A
4) D	14) B
5) B	15) C
6) C	16) D
7) D	17) C
8) A	18) B
9) B	19) D
	20) $g(x)$, The minimum is the y-value of the vertex. The vertex of the graph $f(x)$ is (2, -18).
10) D	Use $x = -\frac{b}{2a}$ to find the vertex of g(x), which is (- ,75, -20.25)20.25 < -18, so the function g(x) has the lesser minimum value.